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Abstract—Parallel and distributed computing have enabled de-
velopment of much more scalable software. However, developing
concurrent software requires the programmer to be aware of non-
determinism, data races, and deadlocks. MPI (message passing
interface) is a popular standard for writing message-oriented
distributed applications. Some messages in MPI systems can be
processed by one of the many machines and in many possible
orders. This non-determinism can affect the result of an MPI
application. The alternate results may or may not be correct.
To verify MPI applications, we need to check all these possible
orderings and use an application specific oracle to decide if these
orderings give correct output.

MPJ Express is an open source Java implementation of the
MPI standard. Model checking of MPI Java programs is a
challenging task due to their parallel nature. We developed a
Java based model of MPJ Express, where processes are modeled
as threads, and which can run unmodified MPI Java programs
on a single system. This model enabled us to adapt the Java
PathFinder explicit state software model checker (JPF) using
a custom listener to verify our model running real MPI Java
programs. The evaluation of our approach shows that model
checking reveals incorrect system behavior that results in very
intricate message orderings.

I. INTRODUCTION

Model checking [6] is a powerful program analysis tech-

nique based on systematic exploration of nondeterministic

choices in a program. Nondeterministic choices could be pro-

gram inputs, modeled behavior of an external system, thread

interleavings in a multithreaded program, or even message or-

ders in a distributed system. Model checking has been used to

verify models of hardware circuits [5]. Earlier software model

checkers required converting the program into a modeling

language which was then verified for certain properties [6].

Recent software model checkers, such as the Java PathFinder

(JPF) [14], now provide the foundation of an increasingly

effective toolset for systematic checking of programs written

in commonly used languages. Recent technological advances

have well-supported the core model checking techniques, and

software model checkers are being applied to larger and larger

programs.

Despite the progress, adapting the model checking tech-

niques for new domains remains a challenging problem in

realizing its true potential in increasing our ability to deploy

more reliable software systems. There are three primary causes

for that. One is to adapt the program under test to run

in the limitations of a given model checkers (e.g., library

support, source code requirements, single machine support,

etc.). Second is to enable monitoring and exploration of new

sources of non-determinism, and third is to allow partial

order reduction (POR) to work effectively. POR [9] is the

mechanism model checking uses to reduce the number of

choices explored on the basis of equivalence sets.

One such domain is MPI programs. Message passing in-

terface (MPI) is a framework for the development of parallel

and distributed applications. It has been implemented in C,

FORTRAN, and Java. The Java implementation is called MPJ

Express1. It is deployed on different machines communicating

through an underlying communication channel. MPI programs

often form the basis of large distributed systems, and their

correctness is extremely critical. However, testing them is

difficult because there are many possible orders messages can

arrive in and it is hard to find if any one of these message

orders does not give the desired outcome.

This paper presents a novel technique to adapt model

checking for unchanged MPI programs written in MPI Java.

While prior work addressed this problem requiring conversion

of the MPI program into modeling languages [26] or provided

general guidelines of how such a solution can be built [10], we

provide a concrete end to end implementation to model check

unchanged MPI Java Programs. Our choice of using MPI Java

enables us to adapt the existing Java PathFinder model checker,

but the fundamental techniques are not specific to Java.

Designing and Debugging of MPI applications is diffi-

cult due to their parallel nature causing issues like non-

determinism, race conditions, deadlocks, etc. Asynchronous

communication and difficulty to produce global state due

to distributed environment create additional challenges. Fur-

ther, faults in distributed applications can occur at different

components and at different layers which make testing of

such application more complex. In this work, we explore all

possible interleavings which highlight the non-deterministic

nature of the application. We make the model of the complete

system which ensures loss-free communication for the testing

environment in addition to the global visibility of complete

state of the system. Further, we do not require injecting the

testing/simulation mechanism at different layers due to the

generation of the complete model of the system.

Our key insight is that an MPI Java proxy model which

converts the new source of non-determinism, i.e. message

1http://mpj-express.org/
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orderings, into events that the existing JPF model checker

can understand, enables model checking of unchanged MPI

Java programs. Such a model also enables effective partial

order reduction (POR) which is built in Java PathFinder. POR

is a technique to reduce state space exploration by detecting

execution of the same state in different order. Such MPI Jave

proxy model alone is not enough for JPF to model check MPI

applications. JPF does not understand Send/Receive calls or

message orders. We have used JPF as a platform and extended

it to explore the state of messages. Further complications are

added by non-blocking receivers e.g. a non-blocking receive

has to be temporarily blocked so other MPI processes can

send before it moves on to ensure that all message orders are

exercised. To implement this, we introduced a custom listener

for message related events, a custom choice point to explore

alternate message orderings and a custom MPJ Express proxy

that translated calls for the unchanged program.

We make the following contributions:

• Model checking of MPI Java programs. We demon-

strate an end-to-end technique for model checking of

unchanged MPI Java programs using the Java PathFinder

model checker.

• MPJ Express proxy model. We defined semantics for

an MPJ Express proxy model that behaves like the native

library (which is not supported in JPF) and simulates

processes in threads and message passing in queues

whose order can be rearranged.

• JPF Adaptation. We adapted JPF for model checking

MPI Java programs using a custom listener extension in

JPF. One key technique we use to explore all message

orders is sender priority. Our receivers block until no

senders are left in the system. This blocking enables all

message choices to accumulate in the queues. Sender

blocking is only made possible due to all states being

centrally available in the model checker.

• Implementation. We provide a complete end-to-end im-

plementation of adapted Java PathFinder model checker

that can model check unchanged MPI Java programs.

The implementation is specific to MPI Java and JPF, but

the techniques can be adapted to MPI programs in other

languages or even other message based systems not using

MPI.

• Evaluation. We evaluated our technique on a number

of small programs and showed that we could effectively

explore message orders and find cases where the answer

differs based on message orders. We have also discussed

scalability of our approach.

The key idea of the paper was earlier presented in a poster

paper in the Proceedings of 21st ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP

2016) [22]. The current paper expands the idea presented in

that earlier work with detailed algorithms, implementation, and

evaluation.

Rest of the paper is structured as follows: Section II dis-

cusses about model checking, model checker Java Pathfinder

and Message passing interface in Java. Technique and imple-

mentation details of our work are discussed in Section III and

IV respectively. Section V explains evaluation of our work and

related work is discussed in Section VI. We conclude presented

work in section VII.

II. BACKGROUND

In this section, we will describe model checking with its

benefits and limitations, introduce Java PathFinder (JPF) and

MPJ (Message Passing Interface in JAVA).

A. Model Checking

Ensuring software and hardware correctness is an important

issue as failure of either can result in huge financial loss and

may have fatal consequences in safety critical systems. Ini-

tially model checking [28] was used for hardware verification

only, but later software verification research community also

adopted the technique.

Model checking, provided a model of system, automatically

checks if the system meets given specifications. This checking

should be exhaustive. Here, specifications include functional as

well as safety requirements. Safety requirements cover absence

of deadlocks and race conditions and any other state that can

cause the system to crash.

We define state as the contents of memory and processor

registers at any given time. State space is all the possible

states of the program. State explosion is the main challenge

faced by model checking techniques. In any system, when the

number of variables increases, the possible states of the system

increase exponentially. This exponential increase results in

state space explosion problem. Model checking works only

for those systems, which either have finite states or finite state

abstractions, otherwise model checking fails. Model checking

tools use Partial Order Reduction (POR) technique to cater

for the issue of state explosion. POR records all the states

created and whenever a new state is generated, it maps this

new state to existing ones and if matches, it stops as this

is an already explored path. Using POR mechanism, we can

reduce the chances of state explosion but cannot eliminate it

completely.

B. Java PathFinder (JPF)

Java PathFinder (JPF) [14] is a software model checker

for Java programs which does not require the specification

to be written in a separate language. JPF core is the Virtual

Machine(VM) for Java bytecode which means you can execute

actual Java code on it. It executes Java code to find defects

and give assurance whether the given properties hold or not.

Software model checking is all about making the right

choices. The most useful feature of JPF is its capability

to identify the points in a program with different execution

choices and explore all of them using choice generators,

called scheduling choice generators. There are many types of

scheduling choice generators, for example, if two threads want

to access a single variable, then a “SharedChoiceGenerator”

is created. Whenever JPF starts analysis of any program, it

295



creates a “RootChoiceGenerator” which is essential for JPF

model checking. Theoretically, JPF can explore all possible

paths through the program, unlike a normal VM. Other than

scheduling choice generators, JPF provides data choice gener-

ators which provide capability to explore the same execution

path with set of different data values.
We cannot ignore the fact that exploring all paths could

result in state space explosion. Partial Order Reduction (POR)

is one of the main technique to minimize the effect of

state explosion problem in model checking. In POR, system

compares the states with already visited states and chooses

a path which is not yet explored. Each time JPF reaches a

point where more than one execution is possible, it performs

state matching of current state with previously visited states.

If current state is already visited, it backtracks and chooses

unexplored paths. JPF performs POR during model checking

of any program.
JPF has an important extension mechanism called listeners.

Using listeners, we can observe, interact and extend JPF. We

can observe current state id, instruction or choice generator in

execution, state of each thread and many other events. In our

work, we have extended the JPF using listener for controlling

and scheduling of thread interleaving.
As explained earlier, JPF itself is a VM, which means

it executes the Java code as JDK. When JPF runs a Java

code, converted to bytecode, it needs the implementation

detail of each bytecode instruction. JPF has complete bytecode

instruction factory which contains all the bytecode instruction

classes. JPF uses these classes when running Java code.

C. Message Passing Interface in Java (MPJ)
Parallel computing widely uses message passing interface

for communication. MPI standard was proposed by High-

Performance Community to avoid vendor specific implementa-

tion of message passing interface. It defines user interfaces and

functionality for wide range of message-passing capabilities.

The major goal of MPI, as most standards have, is the

degree of portability across different machines. By different

machines, we mean running MPI standard transparently on

heterogeneous systems [11]. Traditionally library implementa-

tions for MPI standard were developed for C/C++ and Fortran

languages because C and Fortran bindings were defined by

MPI Standard Document.
For Java HPC community, Java binding for MPI Standard

was suggested which is called MPJ API or simply MPJ [1].

MPJ Express [2] is a software which provides reference

implementation of MPJ API for writing MPI Java programs.

MPJ Express completely implements MPJ standard. It supports

all primitive and user-defined data types. It allows point-to-

point and collective communication with the flexibility of

synchronous and asynchronous operations. A simple MPI Java

program in which one process sends messages to two other

processes is shown in Figure 1.

III. OUR MPJ MODEL

MPJ Express is a framework to run MPI Java programs

in a cluster as well as in a multicore environment. Each MPJ

import mpi.*;
public class Main {
public void main(String [] args) {
MPI.Init(args) ;
if(rank == 0) {
String buffer[] = new String[2] ;
buffer[0] = "1,2,3,4" ;
buffer[1] = "5,6,7,8" ;
for(int i = 1 ; i <= 2 ; i++) {
MPI.COMM_WORLD.Send(buffer, (i-1),
1, MPI.OBJECT, i, 100) ;
}
} else {
String buffer1[] = new String[1] ;
Status status =

MPI.COMM_WORLD.Recv(buffer1, 0,
buffer1.length, MPI.OBJECT, 0, 100);
}
MPI.Finalize() ;
}
}

Fig. 1: Simple MPI Java Program

process is identified by a unique rank number, assigned by the

framework. MPJ Express provides built-in functions Rank(),

Size(), Recv() and Send() to get the rank of specific process,

total number of processes in communication, receiving a

message, and sending a message. We are using Java PathFinder

(JPF) as model checker for our work. JPF has a limitation

that it cannot model check programs executing on different

machines. To cater for this issue, we have developed our

model of MPJ Express, shown in Figure 2. Our model uses

multithreading in which each thread represents a real MPI

Java process, as shown in Figure 3. An MPI process (aka

distributed node) is usually mapped to an OS process whereas

our technique maps it to an OS thread. This enables us to

model distributed communication using queues and to use JPF

to model check the single process containing all these threads.

For each MPJ process, we have created a thread and assigned

it a rank number, same as its rank in MPJ Express. Each MPJ

process, modeled as thread, can access its rank number in

the same manner as in the MPJ Express by calling Rank()

function. We have also modeled Size() function which returns

the total number of threads executing. “MPJ Express Model”

is our configuration and thread creating class. Our model

configures the number of threads in “MPJ Express Model”

class, which is given as the number of processes parameter to

MPI Java programs. Our model uses Java reflection for running

unmodified MPI Java programs. Java reflection enables us

to execute multiple threads of an unmodified MPJ program.

Intracomm class in MPJ Express framework is responsible for

message sending and receiving functionality. We have also

implemented it with identical functionality for our model.

Real MPI Java programs send and receive messages using

the underlying physical infrastructure for communication. In

our model, we are using a shared synchronized queue to
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Fig. 2: Mapping of MPJ Express Programs to Our Model

represent physical communication channel, as shown in Fig-

ure 3. This shared queue represents the underlying physical

infrastructure used by real MPI Java programs. Using a shared

synchronized queue to model communication channels ensures

prevention of deadlock or race condition. Each enqueue opera-

tion represents send message function of the real system. In the

same way, each dequeue operation represents receive message

function of the real system. Threads enqueue and dequeue

messages in the queue to exhibit Send() and Recv() behaviors

respectively. In send function, we enqueue the message with

send function arguments containing receiver rank and tag. We

are using 100 as the special sender rank to specify wildcard

receive. For receive function, the Wait Notify mechanism of

Java is used if message is not in the queue otherwise message

is dequeued from the queue. Messages in our model can not

be dropped due to shared queue which implies completely

loss-free communication channel. Our MPJ Express model

supports all data types which are supported by MPJ Express.

Our technique can also perform deadlock detection for MPI

programs. Once the MPI application is modeled in JPF and

all message orders are exercised, JPF will find message orders

that result in deadlocks for free. Partial order reduction (POR)

mechanism of JPF effectively prunes the state space of our

model checking process.

Our proposed technique is sound because if it finds any

message interleaving producing incorrect result, it is guaran-

teed that same interleaving can be produced by one of the

possible message orderings of the original MPI Java program.

When a sender sends a message that more than one receiver

can receive, we exercise all scenarios where the message

is received by each of the different receivers. Thus every

interleaving found is a possible and valid interleaving. Our

approach is not complete because if it does not find any

interleaving producing incorrect results, then it might be due to

some limitation of model checking e.g. state space explosion.

IV. IMPLEMENTATION DETAILS

Existing model checkers (e.g. Java PathFinder) cannot

model check MPI Java programs directly because such pro-

grams are running on different machines as well as due to

MPJ Express’s dependency on native Java libraries. So, we

Fig. 3: Our MPJ Express Model

have implemented our proposed technique to model MPI Java

programs without any modifications in source code or writing

additional specifications. We have created our own listener

and package of supporting classes for logging in JPF. In

this section, we will explain implementation details of our

technique for model checking of MPI Java (MPJ) programs.

A. Supporting Classes

JPF is extended with a listener and a set of supporting

classes to perform model checking of MPJ programs. These

supporting classes are used to monitor and for logging state of

the model checking processes. StateNode is the basic class for

logging state variables corresponding to each state in JPF, as

shown in Figure 4. Additionally, it logs the blocked threads in

current state as well as from immediate parent to root node. It

also holds the information of threads which dequeued at least

one message and waiting for another message. StateTree class

is used for logging the overall state space of the system along

with blocked threads at each stage, inheriting from parent and

further passing to children. It initiates new state by inheriting

the blocked threads of parent and logging those threads that

already got at least one message from the queue and are

waiting for more messages. To block execution of a thread if

there is no message for the respective thread, WaitingListClass

is used to get the updated status of queue. Queue status is

refreshed whenever a new message is inserted, or thread is

going to get the second message out of queue. The update

on second message ensures that the previous message for the

same thread has been removed from the queue.

B. Listener for State Space Exploration

In the start of the program, all runnable threads are either

senders or receivers. Threads want to send the message(s) put

the message(s) in the common queue, MessageQueue data

structure in our implementation as shown in Algorithm 1.

If these threads have successfully put their message(s), they

get terminated, or if same thread is expecting to receive the

message(s) in the future, that threads get blocked. Threads

which start with receiving messages also get blocked at the

start for interleaving exploration. Blocking or termination of

thread will continue until either all threads get terminated after

sending messages or get blocked. All blocked and terminated
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// StateNode.java
package gov.nasa.jpf.supportingClasses;
import java.util.ArrayList;
import gov.nasa.jpf.vm.ThreadInfo;
public class StateNode {
public int stateId;
public StateNode Parent;
public ArrayList<StateNode> Children;
public ArrayList<ThreadInfo> Threads;
public ArrayList<ThreadInfo> ParentThreads;
public ArrayList<ThreadInfo> ThreadLog;
}
// StateTree.java
public class StateTree {
private static StateNode Root;
private static StateNode CurrentNode;
public StateTree() {...}
public void StateAdvance(int _state_id,
ArrayList<ThreadInfo> _threadLog) {...}
/* Other Functions */
}

Fig. 4: Monitoring Classes

threads are logged by BlockedThreads and TerminatedThreads

data structures respectively, as shown in Algorithm 1.

A new choice generator will be created scheduling all

blocked threads waiting for messages from the queue, repre-

sented as ChoiceGenerator. Each thread (i.e. choice) checks if

there is a message for it in queue or not. If there is a message

in the queue, it dequeues and proceeds with normal execution.

If there is no message for this thread, it gets blocked again.

ExecuteThread is the function in mentioned algorithm which

is dealing with blocking of threads and controlling enqueue,

dequeue operations.

All data structures are empty at the start of the program

except Threads and ChoiceGenerator which are initialized with

all the runnable threads. The point of execution where all

threads are either blocked or terminated, a ChoiceGenerator

is created from BlockedThreads. Schedule function is respon-

sible for creating ChoiceGenerator from BlockedThreads.

We are also keeping track of states of our program regarding

runnable, blocked and terminated threads. StateStorage data

structure is maintaining the log of our all states. After updating

the StateStorage, each thread (choice) from ChoiceGenera-

tor get scheduled calling ExecuteThread function. Scheduler

function is responsible for tracking the states and scheduling

choices in our implementation.

C. Choice Generators

In Java PathFinder (JPF), we have disabled all scheduling

choice generators which are normally created by JPF for

creating thread interleavings except “TerminatorChoiceGener-

ator”. “TerminatorChoiceGenerator” is responsible for creating

thread interleavings when a thread is terminated and helps to

explore all possible interleavings. In addition, “RootChoice-

Generator” is used to model checking of program by JPF. The

Algorithm 1: Interleaving Exploration Algorithm

1 MessageQueue← Empty
2 StateStorage← Empty
3 TerminatedThreads← Empty
4 BlockedThreads← Empty
5 Threads← AllRunnableThreads()
6 ChoiceGenerator ← Choices(Threads)
7 Scheduler(ChoiceGenerator)
8 Function Scheduler(ChoiceGenerator)
9 currentState← RunnableThreads ∪

BlockedThreads ∪ TerminatedThreads
10 if currentState /∈ StateStorage then
11 StateStorage← StateStorage ∪ currentState
12 else
13 return
14 foreach Choice ∈ ChoiceGenerator do
15 ExecuteThread(Choice)

16
17 Function ExecuteThread(thread)
18 if thread.instruction = Recv() then
19 if thread ∈ BlockedThreads then
20 if MessageQueue �MessageForThread then
21 MessageQueue.Dequeue()
22 else
23 BlockedThreads.Enqueue(thread)
24 Schedule(AllThreads \

(BlockedThreads∪TerminatedThreads))

25 else
26 Schedule(AllThreads \ (BlockedThreads ∪

TerminatedThreads))

27 else if thread.instruction = Send() then
28 MessageQueue.Enqueue(thread.message)
29 else

/* Execute Program Source Code */

30
31 Function Schedule(Threads)
32 if Threads �= ∅ then
33 ChoiceGenerator ← Choices(Threads)
34 else
35 ChoiceGenerator ← Choices(BlockedThreads())
36 BlockedThreads← ∅
37 Scheduler(ChoiceGenerator)

choice generator of “ThreadChoiceFromSet” type is created

manually by our listener when all threads get blocked after

inserting messages in the queue, and out-of-order reception

of messages from the queue is intended. Disabling JPF’s

ChoiceGenerators and creating own ChoiceGenerator ensure

complete control of thread scheduling. At the start of JPF exe-

cution, there is only “RootChoiceGenerator” with main thread

of our configuration class “MPJ Express Model”. As a result

of termination of main thread, a “TerminatorChoiceGenerator”

is created with all runnable threads as choices. JPF makes

choice of one runnable thread for execution while the listener

observes the execution.
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D. Thread Interleaving Exploration

Threads in our model can have two states, which are blocked

state and unblocked state. Threads waiting for the message(s)

in queue or from other threads are said to be in blocked

state. Unblocked (runnable) threads are those threads which

are never executed from the start of program or unblocked

after the creation of choice generator to execute all the blocked

threads.

Threads can be categorized into three types according to

their send/receive behavior i.e. (Type I) thread only sends

message(s), (Type II) thread only receives message(s) and

(Type III) thread both sends and receives message(s).

During the execution of Type I thread, it enqueues messages

in shared queue and terminates. As a result, a “Terminator-

ChoiceGenerator” is created with all runnable threads which is

further used to explore all interleavings. We have instrumented

JPF in such a way that whenever a thread reaches Recv()

function, JPF pause the execution of respective thread, creates

a new choice generator of “ThreadChoiceGenerator” type and

schedule remaining unblocked threads. So, Type II threads get

blocked when their execution reaches at Recv() function. It

is quite possible that this thread does not get all messages

from queue in its first attempt, it remains blocked until

some message is found in queue for this thread. We have

implemented in our listener that state of the queue is refreshed

whenever a send function call returns or a thread tries to get

message from queue. Thread terminates after getting all the

messages from the queue. Processing of Type III thread is

basically the combination of both Type I and Type II threads.

If a thread sends message followed by receive and message to

be received is not found in the queue, it starts waiting until

all other threads either get blocked or terminate. If it receives

message followed by send, it gets blocked to receive message

until all remaining threads either get blocked or terminated.

Once it receives the message, it enqueues message to send in

queue.

A thread gets blocked at Recv() function call because we

want all threads to send messages first to explore all the

interleaving. When all runnable threads get blocked, choice

generator is created to schedule all blocked threads. When

a thread gets blocked during the execution, a new choice

generator is created with remaining runnable threads, and

choice generator explores all the choices one by one. Blocked

threads are logged in StateTree class, and their state is logged

in StateNode structure. When another thread gets blocked,

choice generator is again created with remaining runnable

threads. These new lower level choice points need to consider

previously blocked threads as well. So, StateNode holds all the

blocked threads log from current node’s parent to root node. In

case of termination of a thread, “TerminatorChoiceGenerator”

is created with all the runnable threads including blocked

threads. So, we have modified JPF’s “ChoiceGeneratorAd-

vance” function, which explores new choices, to process

unblocked choices ignoring blocked ones. In this way, we

ensure all the threads are executed in all possible interleaving

and find any interleaving producing incorrect result due to

non-determinism in the given MPJ program.

V. EVALUATION

We have implemented our technique in JPF by extending

it with custom listener and making other necessary modifica-

tions, as described earlier. We have evaluated our technique

to model check MPI Java programs and compared its per-

formance with MPJ Express. We have used order-sensitive

distributed applications using point-to-point communication to

evaluate our work. Different interleaving of processes in order-

sensitive applications may produce wrong results. Our work

can be used to verify any MPI Java program using point-to-

point communication without any code modification or addi-

tional dependencies. MPJ processes are modeled as threads

in our approach. Therefore, MPJ processes are referred to as

threads in this section and ‘Rank i’ means ‘thread with Rank

i’ for simplicity. We have explained three examples in this

section with state diagrams and all possible scheduling options

explored by our model. The first example gives the basic

understanding of how our system explores all possible states

of a program and discard repeated states. The other examples

are variants of the running average problem implemented in

MPI Java program. Verification of same problem with different

algorithm and workload shows that our technique can verify

any MPI Java program without need of any modification

successfully Running average is used for the analysis of

data by calculating average of subsets of data. It is used

in many real-world applications, e.g., technical analysis of

stock prices, gross domestic product in economics, etc. In

case of parallel implementation of the problem, order of the

messages containing local average alters the final result of

program. Our evaluation shows that our model can detect any

incorrect ordering due to non-determinism in message-passing

applications.

A. Point-to-Point Communication between 1 Sender and 2
Receivers

The purpose of this example is to explain how JPF explores

all possible states of MPI Java program using our MPJ Express

model. In this example, three MPI Java threads with Rank 0,

Rank 1 and Rank 2 are initiated. Rank 0 is responsible for

work distribution. Rank 1 and Rank 2 receive the assigned

work from Rank 0. Complete state diagram is also shown

in Figure 5. In this example, each thread wants to receive

message (using Recv() function call) gets blocked and other

runnable threads continue with their execution. We do not

stop execution of any thread which wants to send message

(Using Send() function call). Message sending threads either

get terminated or get blocked on receiving a message after

sending messages.

The word “State” is used in little different meanings; a

“State” is 3-tuple set containing runnable threads, blocked

threads, and terminated threads: State i[(Runnable Threads),

(Blocked Threads), (Terminated Threads)]. The order of

threads in a tuple does not matter. A state is already visited if
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Fig. 5: State Space of Point-to-Point Communication Between

1 Sender and 2 Receivers

we have seen the same set before. Table I shows the complete

state space of example mentioned above, which is necessary

to get the better understanding.

JPF starts model checking process with “RootChoiceGen-

erator”. JPF finds three threads as runnable and generates a

choice point with three options i.e. Rank 0, Rank 1 and Rank 2.

Starting with Rank 0, it sends messages to other two threads

and terminates. At this point, “TerminatorChoiceGenerator” is

created (State 1) with remaining runnable threads in system

(i.e. Rank 1 and Rank 2).

As the first choice, Rank 1 executes and gets blocked on

Recv(). A new choice point (State 2) is generated with all

possible runnable threads. Rank 2 executes again and block

on Recv(). Now, a state is reached with executable threads

as choice. So, we have extended JPF in such a way that it

schedule all paused threads(State 3). Transition State 1 (Sr.

No 4 in Table I) is not created by JPF, but this represents a

state where we do not have any executable threads, and there

are threads blocked earlier. In this case, our listener in JPF

creates a choice point with all blocked threads.

On State 3, the first choice out of two choices (Rank 1

and Rank 2) runs, receives message and terminates. “Termi-

natorChoiceGenerator” is created with only Rank 2 as choice

(State 4). It executes, receives message and terminates. A new

end state (State 5) is generated with no executable threads.

At this point, system backtrack to previous states until some

state still has choice(s) to be processed. In this case, State 3

has one choice to be processed, backtracking stops there,

and Rank 2 executes till termination. As a result, “Termi-

natorChoiceGenerator” is created (State 6) and runs with

all remaining executable threads as choices. After execution

of Rank 1, State 7 is reached, which is end state. System

backtracks to the previous states and marks them processed

until some state with available choice(s) is found. In this case,

system backtracks State 6, State 3, State 2 till State 1 and start

executing the other choice, i.e. Rank 2. Rank 2 gets blocked on

TABLE I: Point-to-Point Communication Between 1 Sender

and 2 Receivers: State Details - Si[(Runnable Threads),

(Blocked Threads), (Terminated Threads)]

Serial No. State number State Details State Type
1. State 0 S0[(0,1,2), (), ()] New
2. State 1 S1[(1,2),(), (0)] New
3. State 2 S2[(2), (1), (0)] New
4. Transition State 1 TS1[(), (1,2), (0)] New
5. State 3 S3[(1,2), (), (0)] New
6. State 4 S4[(2), (), (0,1)] New
7. State 5 S5[(), (), (0,1,2)] New
8. State 6 S6[(1), (), (0,2)] New
9. State 7 S7[(), (), (0,1,2)] New
10. State 8 S8[(1), (2), (0)] New
11. Transition State TS[(), (1,2), (0)] TS1
12. State 9 S9[(0,2), (1), ()] New
13. Transition State TS[(2), (1), (0)] State 2
14. State 10 S10[(0), (1,2), ()] New
15. Transition State TS[(), (1,2), (0)] TS1
16. State 11 S11[(0,1), (2), ()] New
17. Transition State TS[(1), (2), (0)] State 8
18. Transition State TS[(0), (1,2), ()] State 10

Recv() after creating new choice point (State 8) with Rank 1 as

executable. Thread with Rank 1 gets blocked after execution,

which leads to the state already seen by JPF (Sr. No. 11). It

continues to State 3 which has no choice and backtracks till

State 0.

At this point, JPF starts with second choice, i.e. Rank 1.

As it reaches Recv() function, it gets blocked, and new choice

point is created (State 9) with Rank 0 and Rank 2 as choices.

Starting with Rank 0 as choice, it gets blocked after execution

leading to already visited state, i.e. State 2 (Sr. No. 12). Upon

executing second option Rank 2, it gets blocked, and new

choice point is created (State 10) with Rank 0 as executable.

After execution of Rank 0 system again reaches already seen

state, i.e. State 3 (Sr. No. 15). States are backtracked until

State 0 is reached with Rank 2 as available choice. Rank 2

executes, gets blocked at Recv() and new choice point is

generated (State 11) with Rank 0 and Rank 1 as executable.

The system reaches to already seen state (State 8) after

execution of Rank 0 and it reaches to already visited state

(State 10) by executing Rank 0.

TABLE II: Roles of Threads

Thread Responsibilities Level
Rank 0 Initiator, Terminator -
Rank 1 Ordinary, Intermediary 1
Rank 2 Ordinary -
Rank 3 Ordinary, Intermediary 0
Rank 4 Ordinary -

TABLE III: Intermediary Workers with Responsibilities

Intermediary Worker Responsible for Ordinary Workers Level
Rank 3 Rank 4 0
Rank 1 Rank 2, Rank 3 1

Rank 0(Terminator) Rank 1 -
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TABLE IV: Work Distribution by Initiator (Rank 0)

Ordinary Worker Work Average
Rank 1 [1,2,3,4] 2.5
Rank 2 [5,6,7,8] 6.5
Rank 3 [9,10,11,12] 10.5
Rank 4 [13,14,15,16] 14.5

B. Running Average with Distributed Receivers

In this section, we are going to present an example of

calculating running average of first 16 integers. We have

used five threads for this example, each thread having a

specific role. Each thread must have at least one of the four

roles, that are initiator, intermediary, ordinary and terminator.

The initiator is responsible for distributing the work among

other threads. Ordinary workers are responsible for processing

and forwarding results to intermediary threads. Intermediary

threads, as name suggests, are responsible for collecting results

from ordinary threads, consolidate them and forward results

to either higher level intermediaries or terminator. Terminator

collects the final results. Each thread can have more than one

role as well. Table II shows the roles of each thread in this

example i.e. Rank 0 act as initiator and terminator whereas

other threads are ordinary/intermediary workers.

As discussed earlier, our MPJ Express model assigns each

thread a unique rank number starting from 0. Rank 0 act as

initiator and terminator so it is responsible for distribution of

task and collection of final result. Rank 1 act as ordinary and

level 1 intermediary worker. It performs assigned task, collects

results from other lower level intermediaries (Rank 3) and

ordinary workers (Rank 2) and forwards consolidated result to

the terminator thread. Rank 3 is level 0 intermediary worker

and responsible for collecting results from Rank 4. Thread

with the lower level is less responsible for collecting results

from other intermediaries/ordinary threads. For example, Level

0 threads are not responsible for collecting results from inter-

mediaries, and they just collect the result of ordinary workers.

Rank 2 and Rank 4 are ordinary workers. They calculate the

perform the assigned task and forward result to Rank 1 and

Rank 3 workers respectively. Table III shows intermediary

workers assigned to ordinary workers, as explained above.

Rank 0 distributes work according to Table IV i.e. each

worker is assigned four integers for average calculation and

waits for the final result from Rank 1 for output. Now, each

(a) Correct Message Ordering (b) Incorrect Message Ordering

Fig. 6: Message Ordering with Distributed Receivers

TABLE V: Message Reception Orderings at Rank 1

Sr. No. Local Average Message Ordering Average
1. Rank 1[2.5] Rank 2[6.5], Rank 3[12.5] 8.5
2. Rank 1[2.5] Rank 3[12.5], Rank 2[6.5] 7

TABLE VI: Roles of Threads

Thread Roles Level
Rank 0 Initiator, Terminator -
Rank 1 Ordinary, Intermediary 0
Rank 2 Ordinary -
Rank 3 Ordinary -
Rank 4 Ordinary -

worker first calculates the average of task assigned to it and

forwards the result to respective intermediary thread. Order of

messages being received at intermediary nodes is important.

Rank 1 distributes array among other threads. Each worker

calculates local average of the array assigned to it and start

forwarding/receiving result to/from respective worker. Rank 2

and Rank 4 calculate averages of numbers assigned to them

and forward messages to Rank 1 and Rank 3 respectively.

Upon receiving result from Rank 4, Rank 3 consolidates it

with locally calculated average and forward result to Rank 1.

Rank 1 collects results from Rank 2 and Rank 3, calculates

the final result and forward it to Rank 0. Now, there are two

possibilities that Rank 1 either receives message from Rank 2

then Rank 3 or vice versa. Both of these message orderings

are shown in Figure 6 where labeling on arrows show the

order of messages. Receiving messages in different orderings

produce different final averages. Results generated from both

orderings at Rank 1 produces different final averages as shown

in Table V. These orderings occur due to the unpredictable

behavior of network. Message ordering in Figure 6a produces

average 8.5 which is correct, whereas message orderings in

Figure 6b produces seven, which is incorrect.

C. Running Average with Common Receiver

In this example, running average is calculated using dif-

ferent work distribution and collection algorithm. Fewer in-

termediary workers for many ordinary workers produce many

message interleavings which may produce incorrect results.

Roles are assigned according to Table VI. In this example,

Rank 0 has the initiator and terminator role, same as previous

example. Rank 2, Rank 3 and Rank 4 act as ordinary workers

(a) Correct Message Ordering (b) Incorrect Message Ordering

Fig. 7: Message Orderings with Common Receiver
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TABLE VII: Work Distribution by Initiator (Rank 0)

Ordinary Worker Work Average
Rank 1 [1] 1
Rank 2 [2] 2
Rank 3 [3,4] 3.5
Rank 4 [5,6,7,8] 6.5

TABLE VIII: Message Reception Orderings at Rank 1

Sr. Local Average Message Ordering Average
1. Rank1[1] Rank2[2], Rank3[3.5], Rank4[6.5] 4.5
2. Rank1[1] Rank2[2], Rank3[6.5], Rank3[3.5] 3.75
3. Rank1[1] Rank3[3.5], Rank2[2], Rank4[6.5] 4.3125
4. Rank1[1] Rank3[3.5], Rank4[6.5], Rank2[2] 3.1875
5. Rank1[1] Rank4[6.5], Rank2[2], Rank3[3.5] 3.1875
6. Rank1[1] Rank4[6.5], Rank2[6.5], Rank2[2] 2.8125

only and send their results to Rank 1. Rank 1 acts as intermedi-

ary worker and receives the result from other ordinary workers.

After that, it sends results to Rank 0 terminator thread. Rank 0

distribute the workload according to Table VII i.e. workers

receive different number of integers for average calculation.

Due to many ordinary workers for one intermediary worker,

intermediary (Rank 1) can receive messages in various orders,

and two of them are shown in Figure 7. Table VIII is showing

all possible orderings. Only first ordering gives the correct

result in which Rank 1 receives the message from Rank 3

followed by Rank 4, as shown in Figure 7a. All other are

wrong, and one of the orderings is shown in Figure 7b in which

Rank 4 message is received followed by Rank 3 message

produce incorrect results.

Sample output of running average example with input of

first sixteen integers is shown in Figure 8. There are nine

threads (MPJ processes) which produce ninety-six interleav-

ings for complete state space exploration, excluding states

pruned by JPF using POR. Only one interleaving at line 6 is

producing correct output (8.5) whereas all other interleavings

produce incorrect average.

Fig. 8: Sample Output of Running Average Example

TABLE IX: Execution Time Taken by Our MPJ Model and

MPJ Express for Running Average Example

No. of Threads Time Taken by
(1 Sender, n Receivers) MPJ Model MPJ Express

1(S), 2(R) 100 ms 237 ms
1(S), 4(R) 1,000 ms 342 ms
1(S), 6(R) 3,000 ms 465 ms
1(S), 8(R) 9,000 ms 497 ms
1(S), 10(R) 109,000 ms 570 ms
1(S), 12(R) 2,896,000 ms 683 ms

D. Scalability of our Approach

We have compared execution time of running average ex-

ample using our MPJ model with execution time taken by MPJ

Express. An Intel Pentium 4 machine with 4GB of RAM was

used for this experiment. Our evaluation shows that our MPJ

Express Model successfully explored all possible interleaving

of MPJ program in the finite amount of time, as shown in

Table IX. Scalability of our approach is affected by the number

of potential receivers for a massage and not by the total num-

ber of processes or by direct point-to-point communication,

hence our examples vary the number of receivers receiving a

message to show effect on scalability. Table IX shows different

execution times for program with single sender/distributor and

n receivers e.g. for first row, 1(S),2(R) means 1 sender and

2 receivers. Second column shows the time it takes to run

the program using our MPI Java model with all possible

interleavings. Whereas, third column shows the time it takes to

run one execution of the program on MPJ Express framework

which might be right/wrong due to non-deterministic nature of

the program. These times shows how scalability is affected by

the number of receivers willing to receive a message. Partial

Order Reduction (POR) mechanism of JPF helps to avoid state

explosion problem in our model.

We have chosen order-sensitive applications which exhibit

a high degree of non-determinism for our evaluation. MPI

applications using a lot of point-to-point communication i.e.

sending to a specific receiver do not generate multiple possible

orders. Only messages that can be received by one of many

receivers require model checking. As shown above, in Fig-

ure 8, ninety-six interleavings are produced with nine threads,

excluding pruned interleavings due to POR, for calculation

of running average. Most real world applications do not

have so many non-deterministic paths which is one of the

obvious reasons to choose small examples to evaluate our

work. Therefore, our approach takes more time as the number

of threads increases due to increase in all possible interleavings

to be explored, which can be seen through the comparison of

time taken by MPJ Express with the time taken by our model.

For the real-world applications, this performance gap is much

smaller due to less non-determinism, which is not of much

interest for evaluation of our approach to verify MPI Java

programs.

VI. RELATED WORK

Efforts to find bugs in MPI-based programs can be broadly

categorized into two main categories: testing and debugging
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methods, verification methods.

Debugging and testing tools work on concrete inputs which

might miss some of the concurrency bugs. DDT2 and To-

talView3 work best when bugs can be replayed, but it is

difficult for MPI programs due to their non-deterministic

nature. Our work does not depend upon the reply behavior

of the programs. Marmot [17], Umpire [27], MUST [15], the

Intel Trace Analyzer and Collector [20] record the runtime

information by intercepting MPI Calls but these tools are

scheduling and input dependent. Our work tries to explore

all the interleaving by model checking MPJ program without

need of intercepting any MPI calls. ValiMPI [13] provides

support for specifying testing criterion for MPI programs to

obtain better quality and coverage of generated test cases.

It works for parallel programs written in C language and

extends Instrumentation Description Language (IDeL) to deal

with such programs. In contrast to ValiMPI, our work runs

on the same unchanged program without using any additional

information or Instrumentation Description Language. Hursey

et al. [16] presented MPI Testing Tool (MTT) for regression

testing of MPI Programs across organizations and environ-

ments. OpenMPI project uses it for regression testing which

means it is also meant for C/C++ MPI programs. This work

is meant for regression testing of MPI programs as opposed

to our work to find all the interleaving of different message

ordering.

DAMPI [29] and ISP [25] check for the non-deterministic

behavior of MPI programs by re-executing the program when

wildcard receive is encountered. So, these tools work only

when non-deterministic choice is made and also depend on

the input of the MPI program. Our work is input indepen-

dent and does not require re-execution of program on non-

deterministic choice. Parallel Control Flow Graph (pCFG) [4]

approach perform the static analysis on the activities which is

hard to automate. Our proposed solution is based on model

checking of programs and free from the problems faced by

static analysis technique. MPI-SPIN [23] model checks the

MPI programs, but it requires user built abstract model of

the program using MPI-SPIN language which becomes very

complex for large programs. Our proposed model does not

require any abstract model of the program and does not

require learning of any new language. MPISE [7] perform

the symbolic execution of the C MPI Program and employs

on-the-fly scheduling algorithm to reduce the interleaving

exploration but this work is limited to C language and requires

specification of certain inputs and symbolic variables. In our

proposed work, there is no need of specification of symbolic

variable or symbolic input. Our model can explore all the

possible interleavings of the program using model checking

of MPJ program. Some other works tried to verify specific

properties of MPI programs which can only be used in that

specific scenario. Siegel et al. [24] presented a method for

verification of MPI programs involving floating point and other

2Allinea DDT: http://www.allinea.com/products/ddt
3TotalView: http://www.roguewave.com/products-services/totalview

complex numerical computations. It performs model checking

along with symbolic execution on the program and check for

the equivalence of sequential version of the same program

with the parallel version. This work does not involve different

message ordering exploration as opposed to our proposed

work. Gopalakrishnan et al. [10] presented the set of tools that

specialize formal methods for the verification of real-world

MPI applications. These tools broadly based on debugging

techniques, symbolic analysis, static and dynamic analysis.

Again, these tools lack the capability to verify the message

ordering in MPI Java program without using any additional

information.

Some other tools also exist for specific language and

specific error checking. MPI-CHECK [19] replace MPI calls

with MPI-CHECK’s own version of same calls, and it only

works for Fortran 90 programs. It is focused on static is-

sues in correct MPI usage unlike dynamic message ordering

bugs. MPIDD [12] and MPIRace-Check [21] only focuses

on deadlock detection and race detection in MPI programs

respectively. As compared to MPIDD and MPIRace-Check,

our work tries to explore message orderings in MPJ programs.

Leungwattanakit et al. [18] presented modular model

checking technique in which model checker (JPF) only verifies

a single process in a distributed system and interact with

other processes running normally outside verification tool.

The interaction between system under test (SUT) and other

peer processes is cached for state backtracking by JPF along

with checkpointing tool to capture peer state executing outside

model checker. This technique limited to verification of SUT

and can not handle non-determinism in peers. It also misses

some faults due to unavailability of complete state space

of the system and only works for applications using client-

server architecture. As opposed to work mentioned above,

our work performs verification of complete system without

producing any additional false negative. NetStub [3] replaces

networking API of Java with manually created stub classes to

capture interaction of single process with distributed system. It

requires model of the environment for verification which is not

required by our work. Above work is also limited to modeling

of network library and does not cater for non-deterministic

nature of distributed systems. CADP [8] is a toolbox for design

of concurrent systems and allow to model the interaction

between MPI and distributed cache coherence protocol but

it does not offer any tool for verification unchanged of MPI

Java program.

Galen et al. [26] presented a tool, Maggy, for translating

MPJ-based Java programs into Promela language for verifica-

tion of safety properties. Whereas, our work does not require

any additional language. Same MPJ program can be verified

for different message orderings using our work without need

of learning any new language, for example, Promela speci-

fications. This work only supports model checking based on

Promela specifications and requires manual editing of Promela

files. Also, it only supports logical control flows present in the

main function and static target of MPJ send/receive functions.

Whereas, our work is not limited to only main function of the
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program and does not require specific format of send/receive

function. Any MPJ program using point-to-point send/receive

can be model checked using our proposed work even if main of

program is calling some other functions. Our work can verify

any MPJ program containing point-to-point communication

without knowledge of any other language and constraints on

logical flow of the program.

VII. CONCLUSIONS

Distributed nature of MPI programs makes it difficult to

model check MPI Programs and very little effort has been

made to verify MPI Java Programs. In this paper, we have

shown that using the Java PathFinder (JPF) explicit state

software model checker; we can model check MPI Java

programs. We developed a Java based model of MPJ Express,

where processes are modeled as threads, and which can run

unmodified MPI Java programs on a single system. This model

enabled us to adapt the JPF model checker to verify our model

running real MPI Java programs. We evaluated our approach

using small examples where model checking revealed message

orders that would result in incorrect system behavior. JPF

was extended by a listener, which creates choice points and

controls the scheduling. Further, we have extended JPF by

introducing a package which helps us in logging the states

and creating relationship between them.

Developing concurrent and distributed software requires

the programmer to be aware of non-determinism, data races,

and deadlocks. While distributed software enables scalability,

correctness and verification become a serious issue. We be-

lieve, model checking of unmodified distributed systems is a

promising technique to enable development of more reliable

distributed systems.
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